
3.3   Magnetic anomalies 

 

• The characteristics of magnetic anomalies 

• Anomalies of simple shapes 

The sphere 

Demagnetization 

The half space 

The thin layer 

The quarter space 

The magnetic pole 

A line of poles 

Horizontal cylinders of polygonal section 

• Poisson’s relationship between g and H 

• The magnetic field of an arbitrary 3D body 

 

 

 
The characteristics of magnetic anomalies 

 

 The objective of magnetic surveys is to map the subsurface distribution 

of magnetization and from this infer the susceptibility and hence the magnetic 

mineral content of the rocks.  The magnetization is detected by measuring the 

variations or anomalies in the Earth’s field caused by the fields produced by 

the subsurface magnetizations. 

 

 The equation for the field of a dipole is given by equation 3.1.1. We 

have seen that magnetized matter is made up of a sum or integral of the 



atomic or domain dipoles so the field of magnetized matter in a volume V is 

given by the integral of 3.1.1 over V: 
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where the elementary dipole moment has been replaced by the dipole moment 

per unit volume.   

 

 The problem with this deceptively simple formula is that the 

magnetization, M, depends on the field via M = χ H, and H is not known 

inside the body.  We have an integral equation with the unknown inside and 

outside the integral.  This is known as a Fredholm integral equation and its 

solution can usually only be obtained numerically.  The general nature of the 

solution can be seen by looking at the solution for bodies of simple shape.  

For some bodies of revolution the problem can be solved analytically as a 

boundary value problem.   

 

 The sphere is one such model and it is particularly useful because its 

anomaly can be used as a first order approximation for any subsurface body of 

compact shape.  The complete solution for the boundary value problem of a 

sphere of radius R, susceptibility χ2, in a uniform inducing field B0 can be 

found in Level 2.  For this analysis it is important to note that the 

magnetization is uniform, and is in the direction of the inducing field.  

Further, the field outside is that of a dipole with a moment given by: 

 

 Dipole moment of sphere, Volume
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The moment is just the magnetization one would have calculated for the 

material of susceptibility χ2, M = χ2 H, times the volume, but reduced by the 

demagnetization factor of  )
3

1(1 2χ+ .   

An interesting practical consequence can be seen in this result.  If χ2 is less 

than 0.1 (S.I.) then the demagnetizing factor is negligible.  If χ2 is 1.0 the 

factor is only 0.75.  We will find below that for most rocks χ2 is less than 0.1 

and so we don’t have to worry about the effect most of the time.   

 

 With this analytic result we can return to the general integral 

expression, Equation 3.3.1, and simply insert H0χ for M.  This is an 

approximation, called the Born approximation, and it is valid whenever χS.I. is 

less than 0.1.  Equation 3.3.1 is used in all the calculations of the anomalous 

fields for subsurface bodies that are presented in texts and papers on magnetic 

modeling.  One must be careful in using these results to interpret the 

anomalies from high susceptibility bodies such as iron ore deposits or metal 

objects.   

 

 This approximation makes the calculation of magnetic anomalies 

similar to those of gravity.  There is a direct mathematical relationship 

between gravity and magnetic anomalies for the same body known as 

Poisson’s relationship.  If the magnetization is constant throughout the 

volume and has direction k and the density is also constant then the vector 

magnetic field anomaly is related to the vector g anomaly by: 
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 This is an extremely useful relationship because it means that you only 

need to calculate the gravity anomaly of a body and the magnetic anomaly 

can be found simply by taking the derivative of vector g in the magnetization 

direction.   

 

 

 
Anomalies of simple shapes 

 

The sphere (dipole) 

 

 Qualitatively the anomalies of most confined bodies can be estimated 

by drawing the field lines emanating from the body.  The sketch below shows 

the anomaly in the vertical component of H, Hz, for a body magnetized in the 

Earth’s field direction.  Usually only the anomalous field component is 

presented because survey results are usually referenced to a base station away 

from the region of interest which is defined as the zero level for the survey.   

 

 



 

 In most surveys  the proton magnetometer is used and it effectively 

measures the anomaly in the Earth’s field direction - this is called the total 

field anomaly.  The total field anomalies for an induced dipole moment M for 

three inclinations I are plotted quantitatively in Figure 3.3.1.  The amplitudes 

are normalized by M/h3 and the horizontal scale is normalized by h the depth 

of the dipole (sphere).  The anomalies at the pole and the equator are 

symmetrical and the depth is about twice the half width.  At an inclination of 

45° N the anomaly is asymmetrical with a low to the north of the body.  The 

depth at these mid-latitudes is roughly estimated as the horizontal distance 

between the peaks of the anomaly.   

 

 



 
The half space 

 

 Hz is the only anomalous component of magnetic field from a 

uniformly magnetized half space.  The anomalous field is: 

Hz = 2π M sin I 

Note that the anomaly is independent of the height of the measurement point.  

This is not a very practical result because such half spaces don’t exist, but the 

result is useful to derive the anomaly of a layer and to show asymptotes for 

the anomaly of a vertical fault.   

 

 

 
The layer 

 

 The anomalous field of a layer of thickness h is the superposition 

(subtraction) of two half spaces a distance h apart vertically.  It is 

consequently zero. 

 

 

 
The quarter space 

 

 The vertical contact between two media of different susceptibilities is 

the same as a quarter space of the difference in susceptibility.  For arbitrary 

magnetization this is a difficult problem and requires a numerical solution.  



For a vertical inducing field the solution is simpler and is given in the sketch 

below. 

 

 
 

The anomaly for a truncated layer of thickness t may be obtained by 

subtracting the anomaly from the quarter space at depth h + t (dashed line) 

from that at depth h (solid line).  Schematically the anomaly looks like: 

 

 



 
The magnetic pole 

 

 While there is no such thing as a magnetic pole, a long thin rod 

magnetized in the direction of its length has the basic response of a pole near 

one of its ends.  The response is actually that of a very long dipole and the 

response of the far end is negligible.  The vertical pipe is a practical model.  

The magnetization along the pipe is stronger than that transverse to the pipe 

so in northern latitudes the dominant effect is from the vertical magnetization 

which yields a pole - like response.  The vertical field anomaly from a pole is 

symmetric and the depth is approximately 1.3 times the half width.  The total 

field anomaly is not symmetric as the following sketch indicates. 

 

 

 
A line of poles 

 

 A line of poles is a reasonable approximation for the anomaly of a 

vertical or subvertical thin sheet.  In a section perpendicular to the strike of 

the sheet (a dip section) the anomaly is similar in shape to that of the N - S 

profile over a pole.   

 

 


	The characteristics of magnetic anomalies
	Anomalies of simple shapes
	The sphere (dipole)
	The half space
	The layer
	The quarter space
	The magnetic pole
	A line of poles


